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Abstract  —  We present and evaluate a new operational solar 
radiation forecast model to be deployed on a prototype basis as 
part of the SolarAnywhere (SA) data service. The SA service 
covers North America and provides seamless access to historical, 
real time and forecasted solar irradiance data with a maximum 
possible geographical resolution of 1 km and a maximum time 
resolution of 1 minute for historical and real time data. The new 
forecast product presented in this article pertains to SA’s 
intermediate spatial and temporal resolution data, respectively 
10 km and hourly. The forecast time horizon ranges from one 
hour ahead to five days ahead. 
Index Terms — solar resource, forecast, simulation, irradiance. 

I. INTRODUCTION 

Solar resource forecasts are essential to facilitating the 
integration of variable energy resources such as PV electricity 
onto the electrical grid. Short-term (1-5 hours) forecasts are 
important for optimizing the deployment of stand-by storage 
and/or variable generation technologies: a recent study by 
Perez et al. [1] showed that accurate forecasts can reduce the 
cost of short term variability mitigation by nearly 50%.  Next-
day and multi-day forecasts are important to optimally 
participate in energy markets as well as to optimize the 
operation of variable generation assets with longer lead times. 

 

II. METHODS 

The new forecast model consists of an optimum mix of 
satellite-derived cloud motion forecasts [2,3], the National 
Digital Forecast Database’s (NDFD) cloud cover-derived 
irradiance forecasts, and several operational numerical 
weather prediction (NWP) models including the following 
global and continental-scale models: The National Center for 
Environmental Prediction’s (NCEP) Global Forecast System 
(GFS) forecasts [4],  the European Centre for Medium-Range 
Forecasts (ECMWF) [5], NCEP’s North American Mesoscale 
(NAM) forecasts [6], and NCEP’s rapid update assimilation 
models including the Rapid Refresh (RAP) and High 
Resolution Rapid Refresh (HRRR) forecasts [7, 8]. The 
satellite-to-irradiance model underlying the cloud motion 
forecasts is a new version of the SA model that utilizes the 
satellite’s infrared channels in addition to its visible channel 
[9]. Therefore the cloud motion model is capable of detecting 
pre-dawn clouds and cloud motion; hence it is capable of 
producing cloud motion forecasts effective from sunrise 
onward, unlike SA’s previous cloud motion model [2] that 
could only initiate forecasts after sunrise.  

The underlying models’ spatial and temporal granularity, 
refresh frequency, and time horizons are presented in Table 1. 

 
 

TABLE I 
UNDERLYING MODELS SPATIAL AND TEMPORAL RESOLUTION 

 

 
 
 

Model
Spatial 

Resolution Coverage Refresh Rate Time Resolution Time Horizon
National Digital Forecastt Database (NDFD) 5 km USA 3-hourly 3 hours 168 hours
Rapid Update (RAP) 13 km North America hourly 1 hour 18 hours
North American Mesoscale (NAM) 12 km North America 6-hourly 1  / 3 hours * 84 hours
Global Forecast System (GFS) ~50 km Global 6-hourly 3 / 12 hours ** 384 hours
European Ctr for Medium Range Weather Forecasts (ECMWF) ~13 kn Global 12-hourly 3 / 6 hours *** 240 hours
High Resolution Rapid Refresh (HRRR) 3 km North America hourly 1 hour 18 hours
Satellite cloud motion 10 km Global**** hourly 1 hour 9 hours
* 1 hour until 36 hours ahead, 3 hours beyond    ** 3 hours until 192 hours ahead, 12 hours beyond    *** 6 hours until 144 hours ahead, 6 hours beyond ****currently operational in North America 
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The performance of the new model and that of its 
underlying NWP and cloud motion models is benchmarked 
against smart persistence forecasts for the four test locations 
listed in Table 2. Persistence consists of projecting current 
irradiance conditions into the future by assuming a constant 
clear sky index, but accounting for fully predictable solar 
geometry changes. Smart persistence consists of lengthening 
the time interval defining current conditions as a function of 
the considered forecast time horizon [10].  

A configuration of the new model including smart 
persistence in the mix of models is also evaluated – this 
configuration would be applied when irradiance measurements 
are available, as would be the case for large power plants.  

The performance of the new model is also gauged against 
the performance of the previous version of the SA forecast 
model that had been operational since its inception in 2009 
[11].  This previous model consisted of a simple combination 
of satellite derived cloud motion irradiance forecasts and 
NDFD forecasts. 

 
TABLE II 

GROUND TRUTH LOCATIONS 
 

 
 

 
III. RESULTS  

Figure 1 illustrates the comparative performance of all the 
considered models as quantified by their relative RMSE 
plotted against forecast time horizon up to 130 hours ahead. 
These results are based on the analysis of 10 months of hourly 
data spanning June 2013 through April 2014. Also plotted in 
Figure 1 for reference purposes is the performance of the 
[non-forecast] intermediate resolution satellite-to-irradiance 
conversion model. The top graph shows model performance 
for the four locations combined, while the four bottom graphs 
illustrate model performance at individual locations. 

Because the objective of the SA forecast service is to 
deliver predicted hourly irradiances with an hourly refresh 
rate, all models are treated as hourly production models and 
compared against all the measured hourly data points. For the 
models with a time resolution or a refresh rate exceeding one 
hour, this implies interpolation or extrapolation of predicted 
values, as well as having to [conservatively] accept forecasts 
with longer lead times for a given forecast time horizon. This 
is, of course, fully reflected in the performance of the new SA 
model that is built, in part, from such lower time 
resolution/refresh rate models. 

Results are consistent with past observations by the authors 
and others (e.g.,  see [12]) showing the ECMWF global model 
as best performing of the forecast models for all but very short 
term time horizons, where the cloud motion model performs 
best. The performance of the high-resolution assimilation 
models -- RAP and HRRR -- is disappointing with RMSEs 
much in excess of persistence and the other considered NWP 
models to the exception of the NAM. A possible reason is that 
their high resolution introduces localized cloud variability 

which cannot exactly resolve observed cloud fields. A similar 
reason was advanced for explaining the modest performance 
of the high resolution WRF model when compared to lower 
resolution global models [12]. 

The new optimal combination model (labelled as Model-1 
in Figure 1) performs considerably better than all its 
underlying models and remains on par or better than the 
reference satellite model up to two hours ahead. In Penn State 
and Desert Rock, the performance of the new forecast model 
remains comparable to the satellite reference up to several 
hours ahead (up to 24 hours ahead for Desert Rock). Including 
smart persistence as an input to the new model (Model-2) 
results in a substantial performance improvement for the one-
hour ahead forecast, a marginal improvement for the two-hour 
forecast horizon, and no improvement beyond. Also reported 
in the individual site graphs is the performance of a model 
resulting from a mix of models which was not optimized for 
these individual sites, but from the ensemble of the test 
locations. The RMSE of this site-independent model is 
represented by the thick orange lines in each of the bottom 
graphs. Minor performance degradation is observed, however 
it remains considerably better than the underlying models. 

  An interesting feature of the smart persistence is that it 
tends to perform better at the 24 hour horizon than at the 6-to-
12 hours horizons, particularly at predominantly clear sites 
with a propensity for diurnal cloud formation (Desert Rock 
and Hanford). This effect is not apparent at Penn State and 
Goodwin Creek where clouds tend to result from frontal 
passages. Also note how smart persistence’s RMSE remains ~ 
level beyond 24 hours. This is unlike conventional persistence 

Location latitude Longitude Elevation Prevailing Climate Data Source
Hanford, CA 36.31° N 119.63° W 73 m Semi-arid NOAA-ISIS

Desert Rock, NV 36.63° N 116.02° W 1007 m Arid NOAA- SURFRAD
Goodwin Creek, MS 34.25° N 89.87° W 98 m Warm continental NOAA- SURFRAD

Penn State, PA 40.72° N 77.93° W 376 m Cold continental NOAA- SURFRAD
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previously used by the author and colleagues [12] which 
continues to increase monotonously beyond one day ahead.  

As such smart persistence is a considerably more stringent 
benchmark of model performance than the previously used 
persistence. Forecasting skill is used here in reference to this 
more stringent benchmark, and defined as one minus the ratio 
between smart persistence RMSE and the considered model 
RMSE. With this definition, a skill of zero represents no 

improvement over the reference benchmark and a skill of one 
represents a perfect forecast. 

Figure 2 compares the forecasting skills of the existing 
SolarAnywhere model and the new model – note that the 
existing SA model is highlighted by the thick, semi-
transparent lines in Figure 1, switching from cloud motion for 
short term forecasts to NDFD for longer time horizons.

 

 
 

 
Fig. 1. Comparing Model RMSEs as a function of forecast time horizon. The additional orange line in the individual site graphs 
represents a model mix that is not site-optimized but common to all sites. 
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The forecasting skills of the new and existing 
SolarAnywhere model are presented as a function of time 
horizon for the 4-sites combination (top graph) and for each 
individual site (bottom graphs). Skill peaks at ~50% for 10-
hour forecasts and remains near 40% for up to 30-hour 
forecasts. At 130 hours (five days ahead), the skill of the new 

SA model remains nearly at 20% while it falls down to zero 
for the old SA model.  Skill improvement from the old to the 
new SA forecast model is shown in Figure 3. Improvement is 
near or greater than 100% for all sites and tends to increase 
with time horizon except for Hanford, where RMSEs are 
generally small and the weather is very stable. 

 
 

 
 

Fig. 2. Comparing skills of the current and new SA forecasts. 
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Fig. 3. Forecast skill improvement 

 
 
Figure 4 provides a qualitative appreciation of model 

performance by comparing forecast-vs-measured irradiance 
scatterplots for the smart persistence, the old SA, the new SA 
and the ECMWF model at the one hour and 24-hours time 
horizons. 

IV. CONCLUDING REMARKS 

We have presented a new operational irradiance forecast 
model consisting of an optimum mix of existing operational 
models. This new model, to be deployed on a prototype basis 
as part of the SolarAnywhere service, performs better than its 
underlying components and results in a substantial gain in 
performance over the current version of the operational 
SolarAnywhere model. 

The present exercise focused on global irradiance (GHI) 
prediction. Future developmental and validation steps will 
focus on direct normal irradiance (DNI) where the effects of 
underlying model output combination and resulting dynamic 
range reduction are exacerbated by the non-linear GHI-DNI 
relationship.  We also plan to investigate whether any of the 
underlying models could be corrected to remove possible 
systematic bias patterns as had previously been successfully 
undertaken for the NDFD model underlying the old SA 
forecast model [13]. 
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Fig. 4. One-hour and 24-hours ahead forecast vs. measured GHI irradiance in 
Goodwin Creek. 
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