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Abstract

We present the perfect forecast concept as both an effective forecast validation metric and an operational strategy
to integrate increasing amounts of variable solar power generation on power grids. The costs incurred in
transforming imperfect into perfect predictions define the new metric: these include the costs of backup storage
and output curtailment necessary to make-up for any over/under predictions. We illustrate the concept with the
most recent version of the SUNY forecast model for hour-ahead and day-ahead forecast examples with single
power plants as well as distributed PV fleets. We show that delivering perfect predictions — i.e., fully eliminating
grid-operators uncertainty -- is achievable at small operational cost. Most importantly, we show that a perfect
forecast strategy with optimized least-cost storage and overbuild/curtailment is an effective first step of a long-
term strategy to cost-optimally transform variable PV generation into firm, effectively dispatchable generation
capable of displacing conventional dispatchable and baseload generation.
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1. Introduction

Solar power forecasts are an increasingly important part of utility and solar industry operations. Models are
becoming more sophisticated and accurate (e.g., Blaga et al., 2019, Yang et al., 2018) and their further
development and validation are the focus of several international collaborative efforts such as that piloted by the
International Energy Agency PV Power Systems Task 16 (IEA, 2019). The authors have produced one such model
-- often referred to as the SUNY model (Perez et al., 2018) -- that is operational in North America and served by
the SolarAnywhere™ data service (SolarAnywhere, 2019). This service is used extensively by the solar and utility
industries for both centralized PV plants and dispersed PV fleets production forecasts. The SUNY model is an
optimized blend of satellite-based cloud motion vector (CMV) forecasts and operational regional/global numerical
weather prediction (NWP) cloud cover and irradiance forecasts. The Electric Power Research Institute (EPRI)
recently evaluated this state-of-the-art model in climatically diverse US regions, and found it to be most accurate
among eleven other operational models (EPRI, 2017).

This paper contains two parts. The first part focuses on model validation and contrasts standard validation metrics
(e.g., Mean Absolute Errors) to the new perfect forecast metric. The second part discusses the logistics of
operational perfect forecasts and argues how such logistics could logically evolve toward least cost, ultra-high
penetration of variable solar [and/or wind] power generation.



2. Forecast Model Evaluation

We analyze the latest version of the SUNY model (Perez et al., 2018) as well as its four underlying Numerical
Weather Prediction (NWP) models: HRRR (2019), NDFD (2019), GFS (2019) and ECMWF (2019). In addition
to these NWP models, the SUNY model blend includes satellite-derived cloud-motion-vector forecasts that are
not evaluated here. The blend is a function of time horizon, solar geometry and predicted insolation conditions.
The operational version of the SUNY model was independently evaluated and found to perform best among eleven
US forecast providers (EPRI, 2017). Here, we evaluate a newer (beta) version that evolves the model’s blend over
time to locally capture the evolution of the relative performance of its underlying models.

All validations are fully independent. For the SUNY model, the validation data are entirely distinct from the data
used for blend optimization.

We consider three logistically important time horizons: 1, 3, and 24 hours ahead.

We evaluate performance for seven point-specific locations as well as for a fleet of sixteen locations in California.
The evaluation period spans 16 months from January 2016 to April 2017. Out of this period, we analyzed ~ 11.5
months’ worth of data when all models were present.

For both point-specific and regional validations, we use global irradiance (GHI) as proxy for solar production.

The seven-station SURFRAD network that spans a wide range of climatic conditions (SURFRAD, 2019) is used
for the site-specific validations. For the regional fleet validation we consider the aggregated output of 16 identical
plants located in each of the state’s climatic regions shown in figure 1 (CEC, 2017). The considered points are
located at the barycenter of each region. We use SolarAnywhere satellite-derived historical irradiances for
performance benchmarking (SolarAnywhere, 2019). We had previously shown that using satellite irradiances is
acceptable, if not in many cases preferable, to validate forecasts, yielding error metrics comparable to ground
measurement validations (Perez et al., 2016). In a recent article (Yang & Perez, 2019) we further discuss the
appropriateness of satellite data for forecast validations: we show that while satellite data may be a suboptimal
reference for single points (under-representing short-term variability) they are appropriate for intercomparing
models, especially as the footprint evolves from single points (individual plants) to regions (PV fleets).

2.1 Standard Metrics

Commonly used standard metrics include Mean Bias, Mean Absolute and Root Mean Square errors (resp. MBE,
MAE, RMSE) as well as their relative (percent) counterparts normalized either to the mean [daytime or 24-hour]
observation or to nominal installed capacity. Another frequently used standard metric is the Forecast Skill that
contrasts a model’s RMSE to that of persistence. Several definitions of persistence exist, including: simple
persistence of irradiance or power; scaled persistence of irradiance or power to account for [fully predictable]
solar geometry variations; and more stringent definitions often termed “smart persistence” such as the one
informally adopted by the IEA Task 46 experts (IEA, 2017). The latter consists of increasing the integration time
defining current conditions commensurately to the forecast time horizon.

The choice of possible relative references for MBE, MAE and RMSE as well as the possible definitions of
persistence do constitute a source of ambiguity when comparing published results from different studies,
particularly for those who are not well versed in the metrics’ definitions.

In this paper we focus on the often-preferred absolute MAE metric and the Forecast Skill in its IEA-Task 46
version (IEA, 2017). An advantage of the absolute MAE is that it can be easily interpreted in terms of %MAE
normalized to nominal capacity conditions — here, since we use GHI as a proxy for PV power generation, the
nominal percent error is obtained dividing the absolute MAE by 1,000 Wm (plane of array irradiance at rated
conditions)

Absolute MAEs for each of the SURFRAD sites and for the California fleet are reported in Table 1. Forecast skills
for the same locations are reported in Table 2. A sample of the results in Table 1 and 2 are illustrated in Figures
2 and 3, respectively.



Tab. 1: Mean Absolute Errors for individual SURFRAD locations and for the 16-site California Fleet

. Smart
Location SUNY ) GFS NDFD ECMWF HRRR
Persitence
our Ahead MAE (Wm-2)
GoodwinCreek 43 51 73 78 66 83
Boulder 61 58 79 90 76 81
Sioux Falls 50 44 67 81 63 78
Penn State 53 53 73 78 70 96
Fort peck 47 44 67 79 60 77
Desert Rock 39 39 46 50 43 62
Bondville 47 49 69 78 64 84
SURFRAD MEAN 49 49 68 76 63 80
California (Mean of indiv. Sites) 34 39 51 53 45 58
California Fleet 12 17 25 30 19 30
3 Hours Ahead MAE (Wm-2)
GoodwinCreek 57 95 74 80 67 83
Boulder 68 108 79 90 75 86
Sioux Falls 55 86 69 83 63 83
Penn State 62 99 75 81 70 98
Fort peck 55 79 69 80 60 80
Desert Rock 43 73 48 52 44 64
Bondville 58 95 71 82 66 84
SURFRAD MEAN 57 91 69 78 64 83
California (Mean of indiv. Sites) 42 65 52 54 46 66
California Fleet 16 37 26 31 20 35
GoodwinCreek 64 144 79 87 68 na
Boulder 77 122 83 96 78 na
Sioux Falls 66 130 72 84 70 na
Penn State 67 129 77 85 71 na
Fort peck 60 94 72 79 65 na
Desert Rock 47 89 50 55 a7 na
Bondville 71 134 81 90 75 na
SURFRAD MEAN 64 120 73 82 68 na
California (Mean of indiv. Sites) 46 87 53 57 46 na
California Fleet 19 60 27 32 20 na

These evaluation results are consistent with our previous publications (e.g., Perez et al., 2018), with ECMWF
exhibiting the best performance among the underlying NWP models, followed by GFS, NDFD and HRRR. The
SUNY model is well ahead of the NWPs for short time horizons — thanks to the advantage provided by its satellite
cloud motion component -- and slightly better than ECMF -- its major blend component -- for longer time
horizons.

The California fleet exhibits considerably reduced MAEs compared to individual sites. Whereas individual points
in California are comparable to Desert Rock (see the individual location California mean of individual sites in
Table 1), the fleet’s MAE is reduced by a factor of nearly 3 for the SUNY model, achieving 12 Wm™ for 1 hour
ahead and 19 Wm for 24 hours ahead (i.e., respectively 1.2% and 1.9% of installed capacity)

Results for the forecast skill metric are also consistent with our previous findings: the underlying NWP models
exhibit a negative skill for one hour ahead while skills become positives beyond 3-hour time horizons. The SUNY
model exhibits a positive skill for all horizons, reaching over 40% for 24 hours ahead forecasts. Interestingly, the
skill differential between the models is noticeably amplified for the regional fleet compared to individual
locations: higher skill for the best models (SUNY is 66% for 24 hours ahead), lower skill for worst models.



Tab. 2: Forecast Skills for individual SURFRAD locations and for the 16-site California Fleet

FORECAST SKILL SUNY GFS NDFD ECMWF HRRR
One Hour Ahead
GoodwinCreek 23% -43% -41% -17% -61%
Boulder 4% -37% -36% -19% -34%
Sioux Falls -1% -55% -69% -32% -79%
Penn State 8% -28% -40% -19% -68%
Fort peck 4% -52% -68% -31% -71%
Desert Rock 12% -18% -18% -3% -55%
Bondville 4% -40% -59% -30% -69%
SURFRAD MEAN 8% -39% -46% -21% -61%
California Mean (single locations) 21% -25% -33% -4% -44%
California Fleet 21% -46% -113% -22% -118%
3 Hours Ahead
GoodwinCreek 37% 13% 13% 29% 3%
Boulder 36% 17% 18% 29% 15%
Sioux Falls 35% 11% 4% 26% -5%
Penn State 38% 23% 14% 30% -1%
Fort peck 33% 8% 0% 22% -5%
Desert Rock 35% 21% 21% 33% -6%
Bondville 39% 19% 8% 31% 5%
SURFRAD MEAN 36% 16% 11% 29% 2%
California Mean 33% 11% 6% 27% -16%
California Fleet 54% 33% 4% 45% -26%
24 Hours Ahead

GoodwinCreek 48% 33% 30% 46% na
Boulder 32% 17% 15% 29% na
Sioux Falls 45% 35% 30% 41% na
Penn State 44% 32% 24% 40% na
Fort peck 35% 15% 14% 27% na
Desert Rock 41% 32% 30% 39% na
Bondville 41% 29% 25% 37% na
SURFRAD MEAN 41% 28% 24% 38% na
California Mean 41% 26% 20% 38% na
California Fleet 66% 55% 34% 64% na

Fig. 1:

Sixteen California Climatic Regions




140

SURFRAD MEAN
OHA1l OHA3 BHA24

120

100
) “ “
40

SUNY Smt. Persist. NDFD ECMWF HRRR

MAE (W/sq.m)
o)
o

70

CALIFORNIA FLEET
OHA1 OHA3 BEHA24

| Amﬂmm

SUNY Smt. Persist. NDFD ECMWEF HRRR

MAE (W/sg.m)
(O]
o

w
o

Fig.2. Mean Absolute Errors for the individual SURFRAD stations (top) and for the California Fleet (bottom.)
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Fig. 3. Mean forecast skill for individual SURFRAD locations (top) and for the California Fleet (bottom)



2.2 Perfect Forecast Metric

In a previous article, we had introduced an initial version of this metric: the cost of storage necessary to offset any
over-predictions (Perez et al., 2016). This initial definition allowed nighttime storage recharge (i.e., implying low

demand and low-cost electricity available at night).

The metric we apply in this article derives from an operationally more robust strategy built on a new algorithm to
transform intermittent PV or wind generation into firm production at lowest cost (Perez et al., 2019a, Perez, 2014):
this algorithm seeks the optimum (least-cost) combination of storage and PV oversizing to meet a specified load
profile with 100% certainty. This optimum combination depends on the relative costs of storage and PV. Here we

consider two scenarios for these costs:

(1) a current utility-scale scenario with turnkey PV at $1,200 per kWac and storage at $200/kWh of
storage capacity;

(2) a future (2050) utility-scale scenario with PV at $400 per kWac and storage at $50/kWh.

The perfect forecast metric can either be expressed in terms of additional $/kW above and beyond the cost of
unconstrained PV, or in terms of levelized cost of energy (LCOE) premium above and beyond the LCOE of
unconstrained PV. Note that LCOE metric requires additional inputs -- the weighted average cost of capital

(WACC) and operating costs, in particular — hence our choice of $/KW for the present paper.

Results are presented in Table 3, for two sample SURFRAD locations and for the 16-points California Fleet.

Tab. 3: Perfect Forecast $/kW premium for selected SURFRAD locations and for the 16-site California Fleet

PERFECT FORECAST Smart
SUNY ) GFS NDFD ECMWF HRRR
METRIC Persitence
One Hour Ahead Perfect Forecast Metric ($/kW -- current)
Goodwin Creek S 414 | S 182 | S 1,145 | S 1,441 | S 1,281 ( S 2,330
Desert Rock S 398 | S 161 | S 968 | S 898 | S 692 | S 1,197
California Fleet S 118 | $ 89 (S 285 | S 169 | $ 246 | $ 595
One Hour Ahead Perfect Forecast Metric ($/kW -- future)
Goodwin Creek S 115 | S 47 | § 328 (S 365 | S 343 | S 627
Desert Rock S 110 | S 44 | § 261 | S 234 | S 192 | $ 328
California Fleet S 33| S 23| $ 77 | $ 50 ($ 69 |$ 163
3 Hours Ahead Perfect Forecast Metric ($/kW -- current)
Goodwin Creek S 589 | S 489 | S 1,180 | S 764 | S 892 (S 2,166
Desert Rock S 560 | S 434S 1,017 | S 912 | $ 691|S 1,076
California Fleet S 172 | $ 255 | $ 316 | $ 184 | $ 262 | S 629
3 Hours Ahead Perfect Forecast Metric ($/kW -- future)
Goodwin Creek S 164 | $ 130 | $ 339 | S 220 | S 251 S 567
Desert Rock S 149 | $ 111 | S 275 | S 237 | S 191 | S 291
California Fleet S 47 | $ 71| S 8|S 54| S 77 | S 173
24 Hours Ahead Perfect Forecast Metric ($/kW -- current)
Goodwin Creek S 835|S 1645|S 1,234 S 949 | S 1,016 na
Desert Rock S 711 (S 1,208|S 1,166|S 1,203 | S 772 na
California Fleet S 199 | S 629 | $ 441 | $ 363 | $ 224 na
Hours Ahead Perfect Forecast Metric (S/kW -- futu
Goodwin Creek S 227 | S 419 | S 356 | $ 266 | S 277 na
Desert Rock S 189 | S 309 | S 309 | S 308 | S 205 na
California Fleet S 52 (S 177 | $ 115 | $ 9% | $ 62 na




The perfect forecast metric results are interesting on two fronts.

First on the operational front, delivering perfect 24-hour forecasts for the 16-plant fleet can be achieved for less
than $200/kWp at current hardware cost. This will reduce to ~ $50/kW with anticipated future PV/Storage costs.
Perfect forecast thus amount to a small financial burden to guarantee operational certainty for the TSOs.

Second, on the accuracy metric front, we note that the model performance ranking is different from the ranking
inferred from standard metrics. Particularly noteworthy is the better performance of persistence in relation to the
underlying NWPs when benchmarked with the perfect forecast instead of the MAE metric. This ranking difference
is illustrated in Figure 4. In this figure, the relative performance of each model is gauged against the average
performance of all the model models across all considered locations and time horizons — a relative performance
below 100% is better than the mean, and vice versa. Whereas persistence scores poorly when using the standard
MAE as a metric, it bests the reference NWPs when using the perfect forecast metric. The optimally blended
SUNY model scores very well with both metrics.

This observed ranking difference between the two metrics can be explained as follow: whereas the MAE is driven
by the error of individual (hourly) forecast events, the perfect forecast metric is driven by the accumulation of
under- or over-forecast conditions that determine the amount of storage and the degree of plant oversizing. The
persistence model is better ‘balanced’ in this respect, with shorter periods of enduring over/underpredicted
conditions than the reference NWPS.

O MAE Metric

M Perfect Forecast Metric

150%
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50%
0%
SUNY Smart GFS NDFD ECMWEF HRRR
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Fig. 4. Comparing model performance ranking across all locations and time horizons for standard and perfect
forecast metrics. The value of 100% amounts to the mean error metric of all models/locations/time-horizons.

3. A Scalable Strategy toward Firm Power Generation

As discussed above, perfect forecasts constitute an economically attractive operational strategy for both grid
operators and solar operators. For grid operators, perfect operational forecasts remove all supply-side load
imbalance uncertainty and associated costs (e.g., spinning reserves) from intermittent renewable energy resources
like PV or wind. For producers, perfect forecast operations amount to replacing imperfect
administrative/regulatory penalties — that can evolve rapidly overtime -- by modest, predictable tangible hardware
costs (PV overbuild and battery).

However, the real value of a perfect forecast strategy lies in its operational scalability to least-cost firm, effectively
dispatchable PV (or wind) power generation. Firm PV power generation -- i.e., the capability of meeting grid
demand 24/7 year-around regardless of time of day, time of year and weather conditions -- is a prerequisite to



ultra-high PV penetration and the displacing of conventional baseload and dispatchable resources.

The landmark Minnesota Solar Pathway study (Perez et al., 2019a, MN Dept. of Commerce, 2018, Perez &
Rabago, 2019) demonstrated that the least-cost means of transforming intermittent renewable energy resources
(wind and PV) into firm, effectively dispatchable resources entails optimizing generation oversizing and storage
reserves. The results of this project show that firm power generation is achievable in a northern state at costs near
or below current conventional generation costs — even before accounting for any environmental benefits (Perez et
al. 2019a, Perez et al., 2019b). Figure 5 (from Perez et al., 2019b) illustrates the case of meeting the Minnesota’s
transmission operator (MISO) load with 100% certainty, using an optimized mix of wind and solar resources and
allowing for a maximum amount natural gas generation of 5%. The figure assumes utility-scale PV wind and
battery future cost projections.
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Fig. 5. Illustrating the catalyst role of overbuilding/curtailment in achieving firm least-cost power generation. Without

overbuilding/curtailment, unconstrained variable wind/solar electricity will certainly achieve [apparent] grid parity (A).
However transforming this variable renewable generation in effectively dispatchable firm power generation capable of
meeting demand 100% of the time will remain well in excess of grid parity if overbuilding/curtailment is avoided because of
the quantity of storage required to make up for multi-day and seasonal production gaps (B). With optimally overbuilt
renewables, storage requirements can be reduced to the point where firm renewable power generation can achieve real grid
parity (C), hence effectively displace conventional power generation (source: Perez et al., 2019b)

Importantly, the operational logistics of least-cost dispatchable PV generation —optimized overbuilding and
storage associated with PV overbuild and proactive operational curtailment -- are identical to the logistics of
delivering perfect forecasts, but on a larger scale (i.e., more storage and overbuilding/curtailment).

Therefore, an operational perfect forecasts strategy constitutes a low-expense entry-level step and a learning curve
for both grid operators and energy producers toward enabling large-scale dispatchable PV power generation
capable of meeting load demand 24/7/365.

The transition from perfect forecast to fully dispatchable PV can be gradual over time following grid operators’
learning curve, PV penetration, and storage/PV costs decreases. Figure 6 graphically contrasts the tasks for
meeting perfect forecast and firm power generation objectives over a sample 10-day period. While the firm power
generation task is considerably heavier, both involve a transformation of the unconstrained solar resource into a



predicted output: predicted production in the case of perfect forecast, and load shape in the case of firm power
generation. Both involve an optimization of storage and overbuild/curtailment requirements.

Perfect forecast logistics
actual

Fig. 6. Comparing the perfect forecast task of transforming PV output into predicted PV output (top)
to the firm power generation task of transforming PV output into the grid’s load shape (bottom).

In Figure 7, we illustrates how a gradual transition from perfect forecast to firm power generation could logically
occur. The figure shows the same 10 days’ worth of forecasted PV production (black line) and the regional TSO
load shape (red line). A gradual transition from perfect forecast logistics (guaranteed output = forecast) to firm
power generation logistics (guaranteed output = regional load) could occur progressively as PV penetration
increases while keeping the same operational storage/curtailment control logistics, in effect moving from the
optimum storage/curtailment cost reported in Table 3, to the optimum firm power generation cost illustrated in
Figure 5.



Fig. 7. llustrating a gradual transition from a perfect forecast PV target (black line) to
a regional load demand profile target (red line).

4. Conclusions

Perfectly forecasting PV production as defined in this article amounts to guaranteeing [imperfectly] forecasted
production by: (1) optimally overbuilding! the PV resource to allow curtailment, and (2) operating optimally
sized battery storage in parallel with PV.

The perfect forecast concept is innovative and effective in three respects:

e Asa metric, it offers unique insights on model performance that are directly relevant to the logistical
costs of operating PV fleets on a power grid. We showed that, compared to standard error metrics, the
perfect forecast metric led to different conclusions regarding the comparative performance of different
models. In particular, the perfect forecast metric indicates that smart persistence is a considerably more
robust model than a standard metrics assessment would indicate.

e  Perfect forecasts represent an operational strategy for grid operators and producers alike that can entirely
remove supply-side load imbalance uncertainty from intermittent renewable energy production.

e Finally, and most importantly, perfect forecast operations represent an actionable entry step to optimally
achieve least cost ultra-high PV (or wind) penetration.
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